Exhaust Gas Recirculation Seminar Topic

All internal combustion engines generate power by creating explosions using fuel and air. These explosions occur inside the engine's cylinders and push the pistons down, which turns the crankshaft. Some of the power thus produced is used to prepare the cylinders for the next explosion by forcing the exhaust gases out of the cylinder, drawing in air (or fuel-air mixture in non-diesel engines), and compressing the air or fuel-air mixture before the fuel is ignited. There are several differences between diesel engines and non-diesel engines. Non-diesel engines combine a fuel mist with air before the mixture is taken into the cylinder, while diesel engines inject fuel into the cylinder after the air is taken in and compressed. Non-diesel engines use a spark plug to ignite the fuel-air mixture, while diesel engines use the heat created by compressing the air in the cylinder to ignite the fuel, which is injected into the hot air after compression. In order to create the high temperatures needed to ignite diesel fuel, diesel engines have much higher compression ratios than gasoline engines. Because diesel fuel is made of larger molecules than gasoline, burning diesel fuel produces more energy than burning the same volume of gasoline. The higher compression ratio in a diesel engine and the higher energy content of diesel fuel allow diesel engines to be more efficient than gasoline engines.