Rocket Proppellant

Published : by :

Rating: 5/5 (6 votes)

Rockets create thrust by expelling mass backwards in a high speed jet (Newton's Third Law). Chemical rockets create thrust by reacting propellants within a combustion chamber into a very hot gas at high pressure, which is then expanded and accelerated by passage through a nozzle at the rear of the rocket. The amount of the resulting forward force, known as thrust, that is produced is the mass flow rate of the propellants multiplied by their exhaust velocity (relative to the rocket), as specified by Newton's third law of motion.

Thrust is therefore the equal and opposite reaction that moves the rocket, and not by interaction of the exhaust stream with air around the rocket. Equivalently, one can think of a rocket being accelerated upwards by the pressure of the combusting gases against the combustion chamber and nozzle. This operational principle stands in contrast to the commonly-held assumption that a rocket "pushes" against the air behind or below it.

Rockets in fact perform better in outer space (where there is nothing behind or beneath them to push against), because there is a reduction in air pressure on the outside of the engine, and because it is possible to fit a longer nozzle without suffering from flow separation, in addition to the lack of air drag

Download seminar docs :