Ferroelectric Memory

A ferroelectric memory cell consists of a ferroelectric capacitor and a MOS transistor. Its construction is similar to the storage cell of a DRAM. The difference is in the dielectric properties of the material between the capacitor's electrodes. This material has a high dielectric constant and can be polarized by an electric field. The polarisation remains until it gets reversed by an opposite electrical field. This makes the memory non-volatile. Note that ferroelectric material, despite its name, does not necessarily contain iron. The most well-known ferroelectric substance is BaTiO3. A Ferroelectric memory cell consists of a ferroelectric capacitor and a MOS transistor. Its construction is similar to the storage cell of a DRAM. The difference is in the dielectric properties of the material between the capacitor's electrodes. This material has a high dielectric constant and can be polarized by an electric field. The polarisation remains until it gets reversed by an opposite electrical field. This makes the memory non-volatile. Data is read by applying an electric field to the capacitor. If this switches the cell into the opposite state (flipping over the electrical dipoles in the ferroelectric material) then more charge is moved than if the cell was not flipped. This can be detected and amplified by sense amplifiers. Reading destroys the contents of a cell which must therefore be written back after a read. This is similar to the precharge operation in DRAM, though it only needs to be done after a read rather than periodically as with DRAM refresh. FRAM is found mainly in consumer devices and because of its low power requirements, could also be used in devices that only need to activate for brief periods. FRAM allows systems to retain information even when power is lost, without resorting to batteries, EEPROM, or flash. Access times are the same as for standard SRAM, so there's no delay-at-write access as there is for EEPROM or flash. In addition, the number of write cycles supported by the FRAM components is nearly unlimited—up to 10 billion read/writes. FRAM combines the advantages of SRAM - writing is roughly as fast as reading, and EPROM - non-volatility and in-circuit programmability